Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Jul 2022]
Title:A Late Fusion Framework with Multiple Optimization Methods for Media Interestingness
View PDFAbstract:The recent advancement in Multimedia Analytical, Computer Vision (CV), and Artificial Intelligence (AI) algorithms resulted in several interesting tools allowing an automatic analysis and retrieval of multimedia content of users' interests. However, retrieving the content of interest generally involves analysis and extraction of semantic features, such as emotions and interestingness-level. The extraction of such meaningful information is a complex task and generally, the performance of individual algorithms is very low. One way to enhance the performance of the individual algorithms is to combine the predictive capabilities of multiple algorithms using fusion schemes. This allows the individual algorithms to complement each other, leading to improved performance. This paper proposes several fusion methods for the media interestingness score prediction task introduced in CLEF Fusion 2022. The proposed methods include both a naive fusion scheme, where all the inducers are treated equally and a merit-based fusion scheme where multiple weight optimization methods are employed to assign weights to the individual inducers. In total, we used six optimization methods including a Particle Swarm Optimization (PSO), a Genetic Algorithm (GA), Nelder Mead, Trust Region Constrained (TRC), and Limited-memory Broyden Fletcher Goldfarb Shanno Algorithm (LBFGSA), and Truncated Newton Algorithm (TNA). Overall better results are obtained with PSO and TNA achieving 0.109 mean average precision at 10. The task is complex and generally, scores are low. We believe the presented analysis will provide a baseline for future research in the domain.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.