Computer Science > Digital Libraries
[Submitted on 7 Jul 2022 (v1), last revised 5 Oct 2023 (this version, v2)]
Title:Academic information retrieval using citation clusters: In-depth evaluation based on systematic reviews
View PDFAbstract:The field of scientometrics has shown the power of citation-based clusters for literature analysis, yet this technique has barely been used for information retrieval tasks. This work evaluates the performance of citation based-clusters for information retrieval tasks. We simulated a search process using these clusters with a tree hierarchy of clusters and a cluster selection algorithm. We evaluated the task of finding the relevant documents for 25 systematic reviews. Our evaluation considered several trade-offs between recall and precision for the cluster selection, and we also replicated the Boolean queries self-reported by the systematic review to serve as a reference. We found that citation-based clusters search performance is highly variable and unpredictable, that it works best for users that prefer recall over precision at a ratio between 2 and 8, and that when used along with query-based search they complement each other, including finding new relevant documents.
Submission history
From: Juan Bascur [view email][v1] Thu, 7 Jul 2022 13:50:27 UTC (1,072 KB)
[v2] Thu, 5 Oct 2023 15:42:11 UTC (1,079 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.