Computer Science > Social and Information Networks
[Submitted on 21 Jun 2022]
Title:Online Trajectory Prediction for Metropolitan Scale Mobility Digital Twin
View PDFAbstract:Knowing "what is happening" and "what will happen" of the mobility in a city is the building block of a data-driven smart city system. In recent years, mobility digital twin that makes a virtual replication of human mobility and predicting or simulating the fine-grained movements of the subjects in a virtual space at a metropolitan scale in near real-time has shown its great potential in modern urban intelligent systems. However, few studies have provided practical solutions. The main difficulties are four-folds. 1) The daily variation of human mobility is hard to model and predict; 2) the transportation network enforces a complex constraints on human mobility; 3) generating a rational fine-grained human trajectory is challenging for existing machine learning models; and 4) making a fine-grained prediction incurs high computational costs, which is challenging for an online system. Bearing these difficulties in mind, in this paper we propose a two-stage human mobility predictor that stratifies the coarse and fine-grained level predictions. In the first stage, to encode the daily variation of human mobility at a metropolitan level, we automatically extract citywide mobility trends as crowd contexts and predict long-term and long-distance movements at a coarse level. In the second stage, the coarse predictions are resolved to a fine-grained level via a probabilistic trajectory retrieval method, which offloads most of the heavy computations to the offline phase. We tested our method using a real-world mobile phone GPS dataset in the Kanto area in Japan, and achieved good prediction accuracy and a time efficiency of about 2 min in predicting future 1h movements of about 220K mobile phone users on a single machine to support more higher-level analysis of mobility prediction.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.