Computer Science > Machine Learning
[Submitted on 7 Jul 2022 (v1), last revised 23 Jul 2023 (this version, v2)]
Title:TF-GNN: Graph Neural Networks in TensorFlow
View PDFAbstract:TensorFlow-GNN (TF-GNN) is a scalable library for Graph Neural Networks in TensorFlow. It is designed from the bottom up to support the kinds of rich heterogeneous graph data that occurs in today's information ecosystems. In addition to enabling machine learning researchers and advanced developers, TF-GNN offers low-code solutions to empower the broader developer community in graph learning. Many production models at Google use TF-GNN, and it has been recently released as an open source project. In this paper we describe the TF-GNN data model, its Keras message passing API, and relevant capabilities such as graph sampling and distributed training.
Submission history
From: Bryan Perozzi [view email][v1] Thu, 7 Jul 2022 18:34:34 UTC (149 KB)
[v2] Sun, 23 Jul 2023 21:18:29 UTC (238 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.