Computer Science > Emerging Technologies
[Submitted on 6 Jul 2022]
Title:Edge-Of-Chaos Learning Achieved by Ion-Electron Coupled Dynamics in an Ion-Gating Reservoir
View PDFAbstract:Physical reservoir computing has recently been attracting attention for its ability to significantly reduce the computational resources required to process time-series data. However, the physical reservoirs that have been reported to date have had insufficient expression power, and most of them have a large volume, which makes their practical application difficult. Herein we describe the development of a Li+-electrolyte based ion-gating reservoir (IGR), with ion-electron coupled dynamics, for use in high performance physical reservoir computing. A variety of synaptic responses were obtained in response to past experience, which responses were stored as transient charge density patterns in an electric double layer, at the Li+-electrolyte/diamond interface. Performance, which was tested using a nonlinear autoregressive moving-average (NARMA) task, was found to be excellent, with a NMSE of 0.023 for NARMA2, which is the highest for any physical reservoir reported to date. The maximum Lyapunov exponent of the IGR was 0.0083: the edge of chaos state enabling the best computational capacity. The IGR described herein opens the way for high-performance and integrated neural network devices.
Current browse context:
cs.ET
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.