Computer Science > Social and Information Networks
[Submitted on 2 Jul 2022 (v1), last revised 11 Jul 2022 (this version, v2)]
Title:Triangle-oriented Community Detection considering Node Features and Network Topology
View PDFAbstract:The joint use of node features and network topology to detect communities is called community detection in attributed networks. Most of the existing work along this line has been carried out through objective function optimization and has proposed numerous approaches. However, they tend to focus only on lower-order details, i.e., capture node features and network topology from node and edge views, and purely seek a higher degree of optimization to guarantee the quality of the found communities, which exacerbates unbalanced communities and free-rider effect. To further clarify and reveal the intrinsic nature of networks, we conduct triangle-oriented community detection considering node features and network topology. Specifically, we first introduce a triangle-based quality metric to preserve higher-order details of node features and network topology, and then formulate so-called two-level constraints to encode lower-order details of node features and network topology. Finally, we develop a local search framework based on optimizing our objective function consisting of the proposed quality metric and two-level constraints to achieve both non-overlapping and overlapping community detection in attributed networks. Extensive experiments demonstrate the effectiveness and efficiency of our framework and its potential in alleviating unbalanced communities and free-rider effect.
Submission history
From: Guangliang Gao [view email][v1] Sat, 2 Jul 2022 02:42:02 UTC (1,208 KB)
[v2] Mon, 11 Jul 2022 07:59:43 UTC (1,210 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.