Computer Science > Programming Languages
[Submitted on 28 Jun 2022]
Title:Gradual Soundness: Lessons from Static Python
View PDFAbstract:Context: Gradually-typed languages allow typed and untyped code to interoperate, but typically come with significant drawbacks. In some languages, the types are unreliable; in others, communication across type boundaries can be extremely expensive; and still others allow only limited forms of interoperability. The research community is actively seeking a sound, fast, and expressive approach to gradual typing.
Inquiry: This paper describes Static Python, a language developed by engineers at Instagram that has proven itself sound, fast, and reasonably expressive in production. Static Python's approach to gradual types is essentially a programmer-tunable combination of the concrete and transient approaches from the literature. Concrete types provide full soundness and low performance overhead, but impose nonlocal constraints. Transient types are sound in a shallow sense and easier to use; they help to bridge the gap between untyped code and typed concrete code.
Approach: We evaluate the language in its current state and develop a model that captures the essence of its approach to gradual types. We draw upon personal communication, bug reports, and the Static Python regression test suite to develop this model.
Knowledge: Our main finding is that the gradual soundness that arises from a mix of concrete and transient types is an effective way to lower the maintenance cost of the concrete approach. We also find that method-based JIT technology can eliminate the costs of the transient approach. On a more technical level, this paper describes two contributions: a model of Static Python and a performance evaluation of Static Python. The process of formalization found several errors in the implementation, including fatal errors.
Grounding: Our model of Static Python is implemented in PLT Redex and tested using property-based soundness tests and 265 tests from the Static Python regression suite. This paper includes a small core of the model to convey the main ideas of the Static Python approach and its soundness. Our performance claims are based on production experience in the Instagram web server. Migrations to Static Python in the server have caused a 3.7\% increase in requests handled per second at maximum CPU load.
Importance: Static Python is the first sound gradual language whose piece-meal application to a realistic codebase has consistently improved performance. Other language designers may wish to replicate its approach, especially those who currently maintain unsound gradual languages and are seeking a path to soundness.
Submission history
From: Kuang-Chen Lu [view email] [via PROGRAMMINGJOURNAL proxy][v1] Tue, 28 Jun 2022 08:53:44 UTC (333 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.