Computer Science > Sound
[Submitted on 21 Jun 2022]
Title:Joint Analysis of Acoustic Scenes and Sound Events Based on Multitask Learning with Dynamic Weight Adaptation
View PDFAbstract:Acoustic scene classification (ASC) and sound event detection (SED) are major topics in environmental sound analysis. Considering that acoustic scenes and sound events are closely related to each other, the joint analysis of acoustic scenes and sound events using multitask learning (MTL)-based neural networks was proposed in some previous works. Conventional methods train MTL-based models using a linear combination of ASC and SED loss functions with constant weights. However, the performance of conventional MTL-based methods depends strongly on the weights of the ASC and SED losses, and it is difficult to determine the appropriate balance between the constant weights of the losses of MTL of ASC and SED. In this paper, we thus propose dynamic weight adaptation methods for MTL of ASC and SED based on dynamic weight average and multi--focal loss to adjust the learning weights automatically. Evaluation experiments using parts of the TUT Acoustic Scenes 2016/2017 and TUT Sound Events 2016/2017 are conducted, and we show that the proposed methods improve the scene classification and event detection performance characteristics compared with the conventional MTL-based method. We then investigate how the learning weights of ASC and SED tasks dynamically adapt as the model training progresses.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.