Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Jun 2022]
Title:Single Morphing Attack Detection using Siamese Network and Few-shot Learning
View PDFAbstract:Face morphing attack detection is challenging and presents a concrete and severe threat for face verification systems. Reliable detection mechanisms for such attacks, which have been tested with a robust cross-database protocol and unknown morphing tools still is a research challenge. This paper proposes a framework following the Few-Shot-Learning approach that shares image information based on the siamese network using triplet-semi-hard-loss to tackle the morphing attack detection and boost the clustering classification process. This network compares a bona fide or potentially morphed image with triplets of morphing and bona fide face images. Our results show that this new network cluster the data points, and assigns them to classes in order to obtain a lower equal error rate in a cross-database scenario sharing only small image numbers from an unknown database. Few-shot learning helps to boost the learning process. Experimental results using a cross-datasets trained with FRGCv2 and tested with FERET and the AMSL open-access databases reduced the BPCER10 from 43% to 4.91% using ResNet50 and 5.50% for MobileNetV2.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.