Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Jun 2022 (v1), last revised 26 Sep 2024 (this version, v2)]
Title:Human Eyes Inspired Recurrent Neural Networks are More Robust Against Adversarial Noises
View PDFAbstract:Humans actively observe the visual surroundings by focusing on salient objects and ignoring trivial details. However, computer vision models based on convolutional neural networks (CNN) often analyze visual input all at once through a single feed-forward pass. In this study, we designed a dual-stream vision model inspired by the human brain. This model features retina-like input layers and includes two streams: one determining the next point of focus (the fixation), while the other interprets the visuals surrounding the fixation. Trained on image recognition, this model examines an image through a sequence of fixations, each time focusing on different parts, thereby progressively building a representation of the image. We evaluated this model against various benchmarks in terms of object recognition, gaze behavior and adversarial robustness. Our findings suggest that the model can attend and gaze in ways similar to humans without being explicitly trained to mimic human attention, and that the model can enhance robustness against adversarial attacks due to its retinal sampling and recurrent processing. In particular, the model can correct its perceptual errors by taking more glances, setting itself apart from all feed-forward-only models. In conclusion, the interactions of retinal sampling, eye movement, and recurrent dynamics are important to human-like visual exploration and inference.
Submission history
From: Minkyu Choi [view email][v1] Wed, 15 Jun 2022 03:44:42 UTC (14,292 KB)
[v2] Thu, 26 Sep 2024 18:59:44 UTC (6,137 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.