Computer Science > Computational Geometry
[Submitted on 8 Jun 2022]
Title:Reconfiguration of Non-crossing Spanning Trees
View PDFAbstract:For a set $P$ of $n$ points in the plane in general position, a non-crossing spanning tree is a spanning tree of the points where every edge is a straight-line segment between a pair of points and no two edges intersect except at a common endpoint. We study the problem of reconfiguring one non-crossing spanning tree of $P$ to another using a sequence of flips where each flip removes one edge and adds one new edge so that the result is again a non-crossing spanning tree of $P$. There is a known upper bound of $2n-4$ flips [Avis and Fukuda, 1996] and a lower bound of $1.5n - 5$ flips. We give a reconfiguration algorithm that uses at most $2n-3$ flips but reduces that to $1.5n-2$ flips when one tree is a path and either: the points are in convex position; or the path is monotone in some direction. For points in convex position, we prove an upper bound of $2d - \Omega(\log d)$ where $d$ is half the size of the symmetric difference between the trees. We also examine whether the happy edges (those common to the initial and final trees) need to flip, and we find exact minimum flip distances for small point sets using exhaustive search.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.