Mathematics > Numerical Analysis
[Submitted on 28 May 2022]
Title:Theoretical Foundation of the Stretch Energy Minimization for Area-Preserving Mappings
View PDFAbstract:The stretch energy is a fully nonlinear energy functional that has been applied to the numerical computation of area-preserving mappings. However, this approach lacks theoretical support and the analysis is complicated due to the full nonlinearity of the functional. In this paper, we provide a theoretical foundation of the stretch energy minimization for the computation of area-preserving mappings, including a neat formulation of the gradient of the functional, and the proof of the minimizers of the functional being area-preserving mappings. In addition, the geometric interpretation of the stretch energy is also provided to better understand this energy functional. Furthermore, numerical experiments are demonstrated to validate the effectiveness and accuracy of the stretch energy minimization for the computation of square-shaped area-preserving mappings of simplicial surfaces.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.