Mathematics > Optimization and Control
[Submitted on 27 May 2022 (v1), last revised 29 Mar 2023 (this version, v2)]
Title:Internal Model-Based Online Optimization
View PDFAbstract:In this paper we propose a model-based approach to the design of online optimization algorithms, with the goal of improving the tracking of the solution trajectory (trajectories) w.r.t. state-of-the-art methods. We focus first on quadratic problems with a time-varying linear term, and use digital control tools (a robust internal model principle) to propose a novel online algorithm that can achieve zero tracking error by modeling the cost with a dynamical system. We prove the convergence of the algorithm for both strongly convex and convex problems. We further discuss the sensitivity of the proposed method to model uncertainties and quantify its performance. We discuss how the proposed algorithm can be applied to general (non-quadratic) problems using an approximate model of the cost, and analyze the convergence leveraging the small gain theorem. We present numerical results that showcase the superior performance of the proposed algorithms over previous methods for both quadratic and non-quadratic problems.
Submission history
From: Nicola Bastianello [view email][v1] Fri, 27 May 2022 12:14:15 UTC (1,085 KB)
[v2] Wed, 29 Mar 2023 14:13:42 UTC (1,118 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.