Computer Science > Computation and Language
[Submitted on 19 May 2022]
Title:Modeling Exemplification in Long-form Question Answering via Retrieval
View PDFAbstract:Exemplification is a process by which writers explain or clarify a concept by providing an example. While common in all forms of writing, exemplification is particularly useful in the task of long-form question answering (LFQA), where a complicated answer can be made more understandable through simple examples. In this paper, we provide the first computational study of exemplification in QA, performing a fine-grained annotation of different types of examples (e.g., hypotheticals, anecdotes) in three corpora. We show that not only do state-of-the-art LFQA models struggle to generate relevant examples, but also that standard evaluation metrics such as ROUGE are insufficient to judge exemplification quality. We propose to treat exemplification as a \emph{retrieval} problem in which a partially-written answer is used to query a large set of human-written examples extracted from a corpus. Our approach allows a reliable ranking-type automatic metrics that correlates well with human evaluation. A human evaluation shows that our model's retrieved examples are more relevant than examples generated from a state-of-the-art LFQA model.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.