Mathematics > Combinatorics
[Submitted on 17 May 2022]
Title:Coloring circle arrangements: New $4$-chromatic planar graphs
View PDFAbstract:Felsner, Hurtado, Noy and Streinu (2000) conjectured that arrangement graphs of simple great-circle arrangements have chromatic number at most $3$. Motivated by this conjecture, we study the colorability of arrangement graphs for different classes of arrangements of (pseudo-)circles.
In this paper the conjecture is verified for $\triangle$-saturated pseudocircle arrangements, i.e., for arrangements where one color class of the 2-coloring of faces consists of triangles only, as well as for further classes of (pseudo-)circle arrangements. These results are complemented by a construction which maps $\triangle$-saturated arrangements with a pentagonal face to arrangements with 4-chromatic 4-regular arrangement graphs. This "corona" construction has similarities with the crowning construction introduced by Koester (1985). Based on exhaustive experiments with small arrangements we propose three strengthenings of the original conjecture.
We also investigate fractional colorings. It is shown that the arrangement graph of every arrangement $\mathcal{A}$ of pairwise intersecting pseudocircles is "close" to being $3$-colorable. More precisely, the fractional chromatic number $\chi_f(\mathcal{A})$ of the arrangement graph is bounded from above by $\chi_f(\mathcal{A}) \le 3+O(\frac{1}{n})$, where $n$ is the number of pseudocircles of $\mathcal{A}$. Furthermore, we construct an infinite family of $4$-edge-critical $4$-regular planar graphs which are fractionally $3$-colorable. This disproves a conjecture of Gimbel, Kündgen, Li, and Thomassen (2019).
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.