Computer Science > Machine Learning
[Submitted on 7 May 2022]
Title:DL4DS -- Deep Learning for empirical DownScaling
View PDFAbstract:A common task in Earth Sciences is to infer climate information at local and regional scales from global climate models. Dynamical downscaling requires running expensive numerical models at high resolution which can be prohibitive due to long model runtimes. On the other hand, statistical downscaling techniques present an alternative approach for learning links between the large- and local-scale climate in a more efficient way. A large number of deep neural network-based approaches for statistical downscaling have been proposed in recent years, mostly based on convolutional architectures developed for computer vision and super-resolution tasks. This paper presents DL4DS, Deep Learning for empirical DownScaling, a python library that implements a wide variety of state-of-the-art and novel algorithms for downscaling gridded Earth Science data with deep neural networks. DL4DS has been designed with the goal of providing a general framework for training convolutional neural networks with configurable architectures and learning strategies to facilitate the conduction of comparative and ablation studies in a robust way. We showcase the capabilities of DL4DS on air quality CAMS data over the western Mediterranean area. The DL4DS library can be found in this repository: this https URL
Submission history
From: Carlos Alberto Gomez Gonzalez [view email][v1] Sat, 7 May 2022 11:24:43 UTC (8,844 KB)
Current browse context:
cs.LG
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.