Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 9 May 2022 (v1), last revised 26 Aug 2022 (this version, v2)]
Title:Productive Performance Engineering for Weather and Climate Modeling with Python
View PDFAbstract:Earth system models are developed with a tight coupling to target hardware, often containing specialized code predicated on processor characteristics. This coupling stems from using imperative languages that hard-code computation schedules and layout. We present a detailed account of optimizing the Finite Volume Cubed-Sphere Dynamical Core (FV3), improving productivity and performance. By using a declarative Python-embedded stencil domain-specific language and data-centric optimization, we abstract hardware-specific details and define a semi-automated workflow for analyzing and optimizing weather and climate applications. The workflow utilizes both local and full-program optimization, as well as user-guided fine-tuning. To prune the infeasible global optimization space, we automatically utilize repeating code motifs via a novel transfer tuning approach. On the Piz Daint supercomputer, we scale to 2,400 GPUs, achieving speedups of up to 3.92x over the tuned production implementation at a fraction of the original code.
Submission history
From: Tal Ben-Nun [view email][v1] Mon, 9 May 2022 09:54:52 UTC (984 KB)
[v2] Fri, 26 Aug 2022 01:10:44 UTC (1,399 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.