Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 May 2022]
Title:MixAugment & Mixup: Augmentation Methods for Facial Expression Recognition
View PDFAbstract:Automatic Facial Expression Recognition (FER) has attracted increasing attention in the last 20 years since facial expressions play a central role in human communication. Most FER methodologies utilize Deep Neural Networks (DNNs) that are powerful tools when it comes to data analysis. However, despite their power, these networks are prone to overfitting, as they often tend to memorize the training data. What is more, there are not currently a lot of in-the-wild (i.e. in unconstrained environment) large databases for FER. To alleviate this issue, a number of data augmentation techniques have been proposed. Data augmentation is a way to increase the diversity of available data by applying constrained transformations on the original data. One such technique, which has positively contributed to various classification tasks, is Mixup. According to this, a DNN is trained on convex combinations of pairs of examples and their corresponding labels. In this paper, we examine the effectiveness of Mixup for in-the-wild FER in which data have large variations in head poses, illumination conditions, backgrounds and contexts. We then propose a new data augmentation strategy which is based on Mixup, called MixAugment. According to this, the network is trained concurrently on a combination of virtual examples and real examples; all these examples contribute to the overall loss function. We conduct an extensive experimental study that proves the effectiveness of MixAugment over Mixup and various state-of-the-art methods. We further investigate the combination of dropout with Mixup and MixAugment, as well as the combination of other data augmentation techniques with MixAugment.
Submission history
From: Dimitrios Kollias [view email][v1] Mon, 9 May 2022 17:43:08 UTC (2,016 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.