Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 May 2022]
Title:Object Class Aware Video Anomaly Detection through Image Translation
View PDFAbstract:Semi-supervised video anomaly detection (VAD) methods formulate the task of anomaly detection as detection of deviations from the learned normal patterns. Previous works in the field (reconstruction or prediction-based methods) suffer from two drawbacks: 1) They focus on low-level features, and they (especially holistic approaches) do not effectively consider the object classes. 2) Object-centric approaches neglect some of the context information (such as location). To tackle these challenges, this paper proposes a novel two-stream object-aware VAD method that learns the normal appearance and motion patterns through image translation tasks. The appearance branch translates the input image to the target semantic segmentation map produced by Mask-RCNN, and the motion branch associates each frame with its expected optical flow magnitude. Any deviation from the expected appearance or motion in the inference stage shows the degree of potential abnormality. We evaluated our proposed method on the ShanghaiTech, UCSD-Ped1, and UCSD-Ped2 datasets and the results show competitive performance compared with state-of-the-art works. Most importantly, the results show that, as significant improvements to previous methods, detections by our method are completely explainable and anomalies are localized accurately in the frames.
Submission history
From: Mohammad Baradaran [view email][v1] Tue, 3 May 2022 18:04:27 UTC (2,188 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.