Computer Science > Logic in Computer Science
[Submitted on 21 Apr 2022 (v1), last revised 8 Apr 2023 (this version, v2)]
Title:Modular Control Plane Verification via Temporal Invariants
View PDFAbstract:Monolithic control plane verification cannot scale to hyperscale network architectures with tens of thousands of nodes, heterogeneous network policies and thousands of network changes a day. Instead, modular verification offers improved scalability, reasoning over diverse behaviors, and robustness following policy updates. We introduce Timepiece, a new modular control plane verification system. While one class of verifiers, starting with Minesweeper, were based on analysis of stable paths, we show that such models, when deployed naively for modular verification, are unsound. To rectify the situation, we adopt a routing model based around a logical notion of time and develop a sound, expressive, and scalable verification engine.
Our system requires that a user specifies interfaces between module components. We develop methods for defining these interfaces using predicates inspired by temporal logic, and show how to use those interfaces to verify a range of network-wide properties such as reachability or access control. Verifying a prefix-filtering policy using a non-modular verification engine times out on an 80-node fattree network after 2 hours. However, Timepiece verifies a 2,000-node fattree in 2.37 minutes on a 96-core virtual machine. Modular verification of individual routers is embarrassingly parallel and completes in seconds, which allows verification to scale beyond non-modular engines, while still allowing the full power of SMT-based symbolic reasoning.
Submission history
From: Timothy Alberdingk Thijm [view email][v1] Thu, 21 Apr 2022 17:36:42 UTC (60 KB)
[v2] Sat, 8 Apr 2023 13:21:15 UTC (89 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.