Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Apr 2022]
Title:DFAM-DETR: Deformable feature based attention mechanism DETR on slender object detection
View PDFAbstract:Object detection is one of the most significant aspects of computer vision, and it has achieved substantial results in a variety of domains. It is worth noting that there are few studies focusing on slender object detection. CNNs are widely employed in object detection, however it performs poorly on slender object detection due to the fixed geometric structure and sampling points. In comparison, Deformable DETR has the ability to obtain global to specific features. Even though it outperforms the CNNs in slender objects detection accuracy and efficiency, the results are still not satisfactory. Therefore, we propose Deformable Feature based Attention Mechanism (DFAM) to increase the slender object detection accuracy and efficiency of Deformable DETR. The DFAM has adaptive sampling points of deformable convolution and attention mechanism that aggregate information from the entire input sequence in the backbone network. This improved detector is named as Deformable Feature based Attention Mechanism DETR (DFAM- DETR). Results indicate that DFAM-DETR achieves outstanding detection performance on slender objects.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.