Computer Science > Computation and Language
[Submitted on 15 Apr 2022]
Title:Characterizing the Efficiency vs. Accuracy Trade-off for Long-Context NLP Models
View PDFAbstract:With many real-world applications of Natural Language Processing (NLP) comprising of long texts, there has been a rise in NLP benchmarks that measure the accuracy of models that can handle longer input sequences. However, these benchmarks do not consider the trade-offs between accuracy, speed, and power consumption as input sizes or model sizes are varied. In this work, we perform a systematic study of this accuracy vs. efficiency trade-off on two widely used long-sequence models - Longformer-Encoder-Decoder (LED) and Big Bird - during fine-tuning and inference on four datasets from the SCROLLS benchmark. To study how this trade-off differs across hyperparameter settings, we compare the models across four sequence lengths (1024, 2048, 3072, 4096) and two model sizes (base and large) under a fixed resource budget. We find that LED consistently achieves better accuracy at lower energy costs than Big Bird. For summarization, we find that increasing model size is more energy efficient than increasing sequence length for higher accuracy. However, this comes at the cost of a large drop in inference speed. For question answering, we find that smaller models are both more efficient and more accurate due to the larger training batch sizes possible under a fixed resource budget.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.