Mathematics > Numerical Analysis
[Submitted on 7 Apr 2022]
Title:An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for solving convection and convection-diffusion equations
View PDFAbstract:We propose a new Eulerian-Lagrangian Runge-Kutta finite volume method for numerically solving convection and convection-diffusion equations. Eulerian-Lagrangian and semi-Lagrangian methods have grown in popularity mostly due to their ability to allow large time steps. Our proposed scheme is formulated by integrating the PDE on a space-time region partitioned by approximations of the characteristics determined from the Rankine-Hugoniot jump condition; and then rewriting the time-integral form into a time differential form to allow application of Runge-Kutta (RK) methods via the method-of-lines approach. The scheme can be viewed as a generalization of the standard Runge-Kutta finite volume (RK-FV) scheme for which the space-time region is partitioned by approximate characteristics with zero velocity. The high-order spatial reconstruction is achieved using the recently developed weighted essentially non-oscillatory schemes with adaptive order (WENO-AO); and the high-order temporal accuracy is achieved by explicit RK methods for convection equations and implicit-explicit (IMEX) RK methods for convection-diffusion equations. Our algorithm extends to higher dimensions via dimensional splitting. Numerical experiments demonstrate our algorithm's robustness, high-order accuracy, and ability to handle extra large time steps.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.