Computer Science > Machine Learning
[Submitted on 1 Apr 2022]
Title:Deep Page-Level Interest Network in Reinforcement Learning for Ads Allocation
View PDFAbstract:A mixed list of ads and organic items is usually displayed in feed and how to allocate the limited slots to maximize the overall revenue is a key problem. Meanwhile, modeling user preference with historical behavior is essential in recommendation and advertising (e.g., CTR prediction and ads allocation). Most previous works for user behavior modeling only model user's historical point-level positive feedback (i.e., click), which neglect the page-level information of feedback and other types of feedback. To this end, we propose Deep Page-level Interest Network (DPIN) to model the page-level user preference and exploit multiple types of feedback. Specifically, we introduce four different types of page-level feedback as input, and capture user preference for item arrangement under different receptive fields through the multi-channel interaction module. Through extensive offline and online experiments on Meituan food delivery platform, we demonstrate that DPIN can effectively model the page-level user preference and increase the revenue for the platform.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.