Mathematics > Optimization and Control
[Submitted on 1 Apr 2022]
Title:Wasserstein Two-Sided Chance Constraints with An Application to Optimal Power Flow
View PDFAbstract:As a natural approach to modeling system safety conditions, chance constraint (CC) seeks to satisfy a set of uncertain inequalities individually or jointly with high probability. Although a joint CC offers stronger reliability certificate, it is oftentimes much more challenging to compute than individual CCs. Motivated by the application of optimal power flow, we study a special joint CC, named two-sided CC. We model the uncertain parameters through a Wasserstein ball centered at a Gaussian distribution and derive a hierarchy of conservative approximations based on second-order conic constraints, which can be efficiently computed by off-the-shelf commercial solvers. In addition, we show the asymptotic consistency of these approximations and derive their approximation guarantee when only a finite hierarchy is adopted. We demonstrate the out-of-sample performance and scalability of the proposed model and approximations in a case study based on the IEEE 118-bus and 3120-bus systems.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.