Computer Science > Information Retrieval
[Submitted on 30 Mar 2022 (v1), last revised 12 Dec 2023 (this version, v3)]
Title:APG: Adaptive Parameter Generation Network for Click-Through Rate Prediction
View PDF HTML (experimental)Abstract:In many web applications, deep learning-based CTR prediction models (deep CTR models for short) are widely adopted. Traditional deep CTR models learn patterns in a static manner, i.e., the network parameters are the same across all the instances. However, such a manner can hardly characterize each of the instances which may have different underlying distributions. It actually limits the representation power of deep CTR models, leading to sub-optimal results. In this paper, we propose an efficient, effective, and universal module, named as Adaptive Parameter Generation network (APG), which can dynamically generate parameters for deep CTR models on-the-fly based on different instances. Extensive experimental evaluation results show that APG can be applied to a variety of deep CTR models and significantly improve their performance. Meanwhile, APG can reduce the time cost by 38.7\% and memory usage by 96.6\% compared to a regular deep CTR model. We have deployed APG in the industrial sponsored search system and achieved 3\% CTR gain and 1\% RPM gain respectively.
Submission history
From: Bencheng Yan [view email][v1] Wed, 30 Mar 2022 11:40:36 UTC (9,176 KB)
[v2] Tue, 20 Sep 2022 08:52:04 UTC (8,731 KB)
[v3] Tue, 12 Dec 2023 15:47:10 UTC (8,724 KB)
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.