Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Mar 2022]
Title:Self-Distillation from the Last Mini-Batch for Consistency Regularization
View PDFAbstract:Knowledge distillation (KD) shows a bright promise as a powerful regularization strategy to boost generalization ability by leveraging learned sample-level soft targets. Yet, employing a complex pre-trained teacher network or an ensemble of peer students in existing KD is both time-consuming and computationally costly. Various self KD methods have been proposed to achieve higher distillation efficiency. However, they either require extra network architecture modification or are difficult to parallelize. To cope with these challenges, we propose an efficient and reliable self-distillation framework, named Self-Distillation from Last Mini-Batch (DLB). Specifically, we rearrange the sequential sampling by constraining half of each mini-batch coinciding with the previous iteration. Meanwhile, the rest half will coincide with the upcoming iteration. Afterwards, the former half mini-batch distills on-the-fly soft targets generated in the previous iteration. Our proposed mechanism guides the training stability and consistency, resulting in robustness to label noise. Moreover, our method is easy to implement, without taking up extra run-time memory or requiring model structure modification. Experimental results on three classification benchmarks illustrate that our approach can consistently outperform state-of-the-art self-distillation approaches with different network architectures. Additionally, our method shows strong compatibility with augmentation strategies by gaining additional performance improvement. The code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.