Computer Science > Information Retrieval
[Submitted on 29 Mar 2022]
Title:The Inefficiency of Language Models in Scholarly Retrieval: An Experimental Walk-through
View PDFAbstract:Language models are increasingly becoming popular in AI-powered scientific IR systems. This paper evaluates popular scientific language models in handling (i) short-query texts and (ii) textual neighbors. Our experiments showcase the inability to retrieve relevant documents for a short-query text even under the most relaxed conditions. Additionally, we leverage textual neighbors, generated by small perturbations to the original text, to demonstrate that not all perturbations lead to close neighbors in the embedding space. Further, an exhaustive categorization yields several classes of orthographically and semantically related, partially related, and completely unrelated neighbors. Retrieval performance turns out to be more influenced by the surface form rather than the semantics of the text.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.