Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Mar 2022 (v1), last revised 3 Jun 2022 (this version, v2)]
Title:Towards End-to-End Unified Scene Text Detection and Layout Analysis
View PDFAbstract:Scene text detection and document layout analysis have long been treated as two separate tasks in different image domains. In this paper, we bring them together and introduce the task of unified scene text detection and layout analysis. The first hierarchical scene text dataset is introduced to enable this novel research task. We also propose a novel method that is able to simultaneously detect scene text and form text clusters in a unified way. Comprehensive experiments show that our unified model achieves better performance than multiple well-designed baseline methods. Additionally, this model achieves state-of-the-art results on multiple scene text detection datasets without the need of complex post-processing. Dataset and code: this https URL and this https URL.
Submission history
From: Shangbang Long [view email][v1] Mon, 28 Mar 2022 23:35:45 UTC (5,003 KB)
[v2] Fri, 3 Jun 2022 05:09:13 UTC (5,005 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.