Computer Science > Sound
[Submitted on 29 Mar 2022 (v1), last revised 29 Jun 2022 (this version, v3)]
Title:Investigating Self-supervised Pretraining Frameworks for Pathological Speech Recognition
View PDFAbstract:We investigate the performance of self-supervised pretraining frameworks on pathological speech datasets used for automatic speech recognition (ASR). Modern end-to-end models require thousands of hours of data to train well, but only a small number of pathological speech datasets are publicly available. A proven solution to this problem is by first pretraining the model on a huge number of healthy speech datasets and then fine-tuning it on the pathological speech datasets. One new pretraining framework called self-supervised learning (SSL) trains a network using only speech data, providing more flexibility in training data requirements and allowing more speech data to be used in pretraining. We investigate SSL frameworks such as the wav2vec 2.0 and WavLM models using different setups and compare their performance with different supervised pretraining setups, using two types of pathological speech, namely, Japanese electrolaryngeal and English dysarthric. Our results show that although SSL has shown success with minimally resourced healthy speech, we do not find this to be the case with pathological speech. The best supervised setup outperforms the best SSL setup by 13.9% character error rate in electrolaryngeal speech and 16.8% word error rate in dysarthric speech.
Submission history
From: Lester Phillip Violeta [view email][v1] Tue, 29 Mar 2022 10:54:35 UTC (2,502 KB)
[v2] Wed, 30 Mar 2022 01:21:21 UTC (2,502 KB)
[v3] Wed, 29 Jun 2022 09:43:44 UTC (1,275 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.