Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Mar 2022]
Title:CrossFormer: Cross Spatio-Temporal Transformer for 3D Human Pose Estimation
View PDFAbstract:3D human pose estimation can be handled by encoding the geometric dependencies between the body parts and enforcing the kinematic constraints. Recently, Transformer has been adopted to encode the long-range dependencies between the joints in the spatial and temporal domains. While they had shown excellence in long-range dependencies, studies have noted the need for improving the locality of vision Transformers. In this direction, we propose a novel pose estimation Transformer featuring rich representations of body joints critical for capturing subtle changes across frames (i.e., inter-feature representation). Specifically, through two novel interaction modules; Cross-Joint Interaction and Cross-Frame Interaction, the model explicitly encodes the local and global dependencies between the body joints. The proposed architecture achieved state-of-the-art performance on two popular 3D human pose estimation datasets, Human3.6 and MPI-INF-3DHP. In particular, our proposed CrossFormer method boosts performance by 0.9% and 0.3%, compared to the closest counterpart, PoseFormer, using the detected 2D poses and ground-truth settings respectively.
Submission history
From: Mohammed Hassanin [view email][v1] Thu, 24 Mar 2022 23:40:11 UTC (2,345 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.