Computer Science > Machine Learning
[Submitted on 25 Mar 2022]
Title:Neural Network Layers for Prediction of Positive Definite Elastic Stiffness Tensors
View PDFAbstract:Machine learning models can be used to predict physical quantities like homogenized elasticity stiffness tensors, which must always be symmetric positive definite (SPD) based on conservation arguments. Two datasets of homogenized elasticity tensors of lattice materials are presented as examples, where it is desired to obtain models that map unit cell geometric and material parameters to their homogenized stiffness. Fitting a model to SPD data does not guarantee the model's predictions will remain SPD. Existing Cholsesky factorization and Eigendecomposition schemes are abstracted in this work as transformation layers which enforce the SPD condition. These layers can be included in many popular machine learning models to enforce SPD behavior. This work investigates the effects that different positivity functions have on the layers and how their inclusion affects model accuracy. Commonly used models are considered, including polynomials, radial basis functions, and neural networks. Ultimately it is shown that a single SPD layer improves the model's average prediction accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.