Computer Science > Machine Learning
[Submitted on 25 Mar 2022]
Title:Learning Losses for Strategic Classification
View PDFAbstract:Strategic classification, i.e. classification under possible strategic manipulations of features, has received a lot of attention from both the machine learning and the game theory community. Most works focus on analysing properties of the optimal decision rule under such manipulations. In our work we take a learning theoretic perspective, focusing on the sample complexity needed to learn a good decision rule which is robust to strategic manipulation. We perform this analysis by introducing a novel loss function, the \emph{strategic manipulation loss}, which takes into account both the accuracy of the final decision rule and its vulnerability to manipulation. We analyse the sample complexity for a known graph of possible manipulations in terms of the complexity of the function class and the manipulation graph. Additionally, we initialize the study of learning under unknown manipulation capabilities of the involved agents. Using techniques from transfer learning theory, we define a similarity measure for manipulation graphs and show that learning outcomes are robust with respect to small changes in the manipulation graph. Lastly, we analyse the (sample complexity of) learning of the manipulation capability of agents with respect to this similarity measure, providing novel guarantees for strategic classification with respect to an unknown manipulation graph.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.