Computer Science > Human-Computer Interaction
[Submitted on 11 Mar 2022]
Title:TrafPS: A Visual Analysis System Interpreting Traffic Prediction in Shapley
View PDFAbstract:In recent years, deep learning approaches have been proved good performance in traffic flow prediction, many complex models have been proposed to make traffic flow prediction more accurate. However, lacking transparency limits the domain experts on understanding when and where the input data mainly impact the results. Most urban experts and planners can only adjust traffic based on their own experience and can not react effectively toward the potential traffic jam. To tackle this problem, we adapt Shapley value and present a visualization analysis system , which can provide experts with the interpretation of traffic flow prediction. TrafPS consists of three layers, from data process to results computation and visualization. We design three visualization views in TrafPS to support the prediction analysis process. One demonstration shows that the TrafPS supports an effective analytical pipeline on interpreting the prediction flow to users and provides an intuitive visualization for decision making.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.