Computer Science > Machine Learning
[Submitted on 8 Mar 2022]
Title:Beam Search for Feature Selection
View PDFAbstract:In this paper, we present and prove some consistency results about the performance of classification models using a subset of features. In addition, we propose to use beam search to perform feature selection, which can be viewed as a generalization of forward selection. We apply beam search to both simulated and real-world data, by evaluating and comparing the performance of different classification models using different sets of features. The results demonstrate that beam search could outperform forward selection, especially when the features are correlated so that they have more discriminative power when considered jointly than individually. Moreover, in some cases classification models could obtain comparable performance using only ten features selected by beam search instead of hundreds of original features.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.