Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 9 Mar 2022 (v1), last revised 6 Feb 2023 (this version, v3)]
Title:GPU-Initiated On-Demand High-Throughput Storage Access in the BaM System Architecture
View PDFAbstract:Graphics Processing Units (GPUs) have traditionally relied on the host CPU to initiate access to the data storage. This approach is well-suited for GPU applications with known data access patterns that enable partitioning of their dataset to be processed in a pipelined fashion in the GPU. However, emerging applications such as graph and data analytics, recommender systems, or graph neural networks, require fine-grained, data-dependent access to storage. CPU initiation of storage access is unsuitable for these applications due to high CPU-GPU synchronization overheads, I/O traffic amplification, and long CPU processing latencies. GPU-initiated storage removes these overheads from the storage control path and, thus, can potentially support these applications at much higher speed. However, there is a lack of systems architecture and software stack that enable efficient GPU-initiated storage access. This work presents a novel system architecture, BaM, that fills this gap. BaM features a fine-grained software cache to coalesce data storage requests while minimizing I/O traffic amplification. This software cache communicates with the storage system via high-throughput queues that enable the massive number of concurrent threads in modern GPUs to make I/O requests at a high rate to fully utilize the storage devices and the system interconnect. Experimental results show that BaM delivers 1.0x and 1.49x end-to-end speed up for BFS and CC graph analytics benchmarks while reducing hardware costs by up to 21.7x over accessing the graph data from the host memory. Furthermore, BaM speeds up data-analytics workloads by 5.3x over CPU-initiated storage access on the same hardware.
Submission history
From: Vikram Sharma Mailthody [view email][v1] Wed, 9 Mar 2022 17:44:56 UTC (3,226 KB)
[v2] Wed, 23 Mar 2022 17:28:48 UTC (3,134 KB)
[v3] Mon, 6 Feb 2023 20:18:16 UTC (4,319 KB)
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.