Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 2 Mar 2022 (v1), last revised 31 Jan 2024 (this version, v5)]
Title:Hyperspectral Pixel Unmixing with Latent Dirichlet Variational Autoencoder
View PDF HTML (experimental)Abstract:We present a method for hyperspectral pixel {\it unmixing}. The proposed method assumes that (1) {\it abundances} can be encoded as Dirichlet distributions and (2) spectra of {\it endmembers} can be represented as multivariate Normal distributions. The method solves the problem of abundance estimation and endmember extraction within a variational autoencoder setting where a Dirichlet bottleneck layer models the abundances, and the decoder performs endmember extraction. The proposed method can also leverage transfer learning paradigm, where the model is only trained on synthetic data containing pixels that are linear combinations of one or more endmembers of interest. In this case, we retrieve endmembers (spectra) from the United States Geological Survey Spectral Library. The model thus trained can be subsequently used to perform pixel unmixing on "real data" that contains a subset of the endmembers used to generated the synthetic data. The model achieves state-of-the-art results on several benchmarks: Cuprite, Urban Hydice and Samson. We also present new synthetic dataset, OnTech-HSI-Syn-21, that can be used to study hyperspectral pixel unmixing methods. We showcase the transfer learning capabilities of the proposed model on Cuprite and OnTech-HSI-Syn-21 datasets. In summary, the proposed method can be applied for pixel unmixing a variety of domains, including agriculture, forestry, mineralogy, analysis of materials, healthcare, etc. Additionally, the proposed method eschews the need for labelled data for training by leveraging the transfer learning paradigm, where the model is trained on synthetic data generated using the endmembers present in the "real" data.
Submission history
From: Kiran Mantripragada [view email][v1] Wed, 2 Mar 2022 17:38:44 UTC (19,202 KB)
[v2] Sat, 5 Nov 2022 18:46:51 UTC (4,406 KB)
[v3] Tue, 8 Nov 2022 01:53:21 UTC (4,406 KB)
[v4] Sun, 28 Jan 2024 23:11:31 UTC (3,024 KB)
[v5] Wed, 31 Jan 2024 00:40:51 UTC (3,024 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.