Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Mar 2022 (v1), last revised 17 Mar 2022 (this version, v2)]
Title:Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation
View PDFAbstract:Panoramic images with their 360-degree directional view encompass exhaustive information about the surrounding space, providing a rich foundation for scene understanding. To unfold this potential in the form of robust panoramic segmentation models, large quantities of expensive, pixel-wise annotations are crucial for success. Such annotations are available, but predominantly for narrow-angle, pinhole-camera images which, off the shelf, serve as sub-optimal resources for training panoramic models. Distortions and the distinct image-feature distribution in 360-degree panoramas impede the transfer from the annotation-rich pinhole domain and therefore come with a big dent in performance. To get around this domain difference and bring together semantic annotations from pinhole- and 360-degree surround-visuals, we propose to learn object deformations and panoramic image distortions in the Deformable Patch Embedding (DPE) and Deformable MLP (DMLP) components which blend into our Transformer for PAnoramic Semantic Segmentation (Trans4PASS) model. Finally, we tie together shared semantics in pinhole- and panoramic feature embeddings by generating multi-scale prototype features and aligning them in our Mutual Prototypical Adaptation (MPA) for unsupervised domain adaptation. On the indoor Stanford2D3D dataset, our Trans4PASS with MPA maintains comparable performance to fully-supervised state-of-the-arts, cutting the need for over 1,400 labeled panoramas. On the outdoor DensePASS dataset, we break state-of-the-art by 14.39% mIoU and set the new bar at 56.38%. Code will be made publicly available at this https URL.
Submission history
From: Kailun Yang [view email][v1] Wed, 2 Mar 2022 23:00:32 UTC (5,896 KB)
[v2] Thu, 17 Mar 2022 23:17:38 UTC (13,230 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.