Electrical Engineering and Systems Science > Systems and Control
[Submitted on 31 May 2021 (v1), last revised 6 Aug 2021 (this version, v2)]
Title:Suppressing the endemic equilibrium in SIS epidemics: A state dependent approach
View PDFAbstract:This paper considers the susceptible-infected-susceptible (SIS) epidemic model with an underlying network structure among subpopulations and focuses on the effect of social distancing to regulate the epidemic level. We demonstrate that if each subpopulation is informed of its infection rate and reduces interactions accordingly, the fraction of the subpopulation infected can remain below half for all time instants. To this end, we first modify the basic SIS model by introducing a state dependent parameter representing the frequency of interactions between subpopulations. Thereafter, we show that for this modified SIS model, the spectral radius of a suitably-defined matrix being not greater than one causes all the agents, regardless of their initial sickness levels, to converge to the healthy state; assuming non-trivial disease spread, the spectral radius being greater than one leads to the existence of a unique endemic equilibrium, which is also asymptotically stable. Finally, by leveraging the aforementioned results, we show that the fraction of (sub)populations infected never exceeds half.
Submission history
From: Sebin Gracy [view email][v1] Mon, 31 May 2021 22:25:17 UTC (91 KB)
[v2] Fri, 6 Aug 2021 11:55:42 UTC (93 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.