Mathematics > Optimization and Control
[Submitted on 18 Feb 2021 (v1), last revised 3 Jun 2021 (this version, v2)]
Title:Maximum weighted induced forests and trees: New formulations and a computational comparative review
View PDFAbstract:Given a graph $G=(V,E)$ with a weight $w_v$ associated with each vertex $v\in V$, the maximum weighted induced forest problem (MWIF) consists of encountering a maximum weighted subset $V'\subseteq V$ of the vertices such that $V'$ induces a forest. This NP-hard problem is known to be equivalent to the minimum weighted feedback vertex set problem, which has applicability in a variety of domains. The closely related maximum weighted induced tree problem (MWIT), on the other hand, requires that the subset $V'\subseteq V$ induces a tree. We propose two new integer programming formulations with an exponential number of constraints and branch-and-cut procedures for MWIF. Computational experiments using benchmark instances are performed comparing several formulations, including the newly proposed approaches and those available in the literature, when solved by a standard commercial mixed integer programming solver. More specifically, five formulations are compared, two compact (i.e., with a polynomial number of variables and constraints) ones and the three others with an exponential number of constraints. The experiments show that a new formulation for the problem based on directed cutset inequalities for eliminating cycles (DCUT) offers stronger linear relaxation bounds earlier in the search process. The results also indicate that the other new formulation, denoted tree with cycle elimination (TCYC), outperforms those available in the literature when it comes to the average times for proving optimality for the small instances, especially the more challenging ones. Additionally, this formulation can achieve much lower average times for solving the larger random instances that can be optimally solved. Furthermore, we show how the formulations for MWIF can be easily extended for MWIT. Such extension allowed us to compare the optimal solution values of the two problems.
Submission history
From: Rafael Melo [view email][v1] Thu, 18 Feb 2021 07:34:53 UTC (159 KB)
[v2] Thu, 3 Jun 2021 10:36:43 UTC (137 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.