Computer Science > Machine Learning
[Submitted on 19 Oct 2020]
Title:Chance-Constrained Control with Lexicographic Deep Reinforcement Learning
View PDFAbstract:This paper proposes a lexicographic Deep Reinforcement Learning (DeepRL)-based approach to chance-constrained Markov Decision Processes, in which the controller seeks to ensure that the probability of satisfying the constraint is above a given threshold. Standard DeepRL approaches require i) the constraints to be included as additional weighted terms in the cost function, in a multi-objective fashion, and ii) the tuning of the introduced weights during the training phase of the Deep Neural Network (DNN) according to the probability thresholds. The proposed approach, instead, requires to separately train one constraint-free DNN and one DNN associated to each constraint and then, at each time-step, to select which DNN to use depending on the system observed state. The presented solution does not require any hyper-parameter tuning besides the standard DNN ones, even if the probability thresholds changes. A lexicographic version of the well-known DeepRL algorithm DQN is also proposed and validated via simulations.
Submission history
From: Alesssandro Giuseppi [view email][v1] Mon, 19 Oct 2020 13:09:14 UTC (736 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.