Mathematics > Optimization and Control
[Submitted on 30 Jan 2025]
Title:Performance guarantees for optimization-based state estimation using turnpike properties
View PDF HTML (experimental)Abstract:In this paper, we develop novel accuracy and performance guarantees for optimal state estimation of general nonlinear systems (in particular, moving horizon estimation, MHE). Our results rely on a turnpike property of the optimal state estimation problem, which essentially states that the omniscient infinite-horizon solution involving all past and future data serves as turnpike for the solutions of finite-horizon estimation problems involving a subset of the data. This leads to the surprising observation that MHE problems naturally exhibit a leaving arc, which may have a strong negative impact on the estimation accuracy. To address this, we propose a delayed MHE scheme, and we show that the resulting performance (both averaged and non-averaged) is approximately optimal and achieves bounded dynamic regret with respect to the infinite-horizon solution, with error terms that can be made arbitrarily small by an appropriate choice of the delay. In various simulation examples, we observe that already a very small delay in the MHE scheme is sufficient to significantly improve the overall estimation error by 20-25 % compared to standard MHE (without delay). This finding is of great importance for practical applications (especially for monitoring, fault detection, and parameter estimation) where a small delay in the estimation is rather irrelevant but may significantly improve the estimation results.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.