Computer Science > Machine Learning
[Submitted on 29 Jan 2025]
Title:Human-Aligned Skill Discovery: Balancing Behaviour Exploration and Alignment
View PDF HTML (experimental)Abstract:Unsupervised skill discovery in Reinforcement Learning aims to mimic humans' ability to autonomously discover diverse behaviors. However, existing methods are often unconstrained, making it difficult to find useful skills, especially in complex environments, where discovered skills are frequently unsafe or impractical. We address this issue by proposing Human-aligned Skill Discovery (HaSD), a framework that incorporates human feedback to discover safer, more aligned skills. HaSD simultaneously optimises skill diversity and alignment with human values. This approach ensures that alignment is maintained throughout the skill discovery process, eliminating the inefficiencies associated with exploring unaligned skills. We demonstrate its effectiveness in both 2D navigation and SafetyGymnasium environments, showing that HaSD discovers diverse, human-aligned skills that are safe and useful for downstream tasks. Finally, we extend HaSD by learning a range of configurable skills with varying degrees of diversity alignment trade-offs that could be useful in practical scenarios.
Submission history
From: Maxence Hussonnois [view email][v1] Wed, 29 Jan 2025 06:14:27 UTC (37,601 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.