Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Nov 2024]
Title:Machine vision-aware quality metrics for compressed image and video assessment
View PDF HTML (experimental)Abstract:A main goal in developing video-compression algorithms is to enhance human-perceived visual quality while maintaining file size. But modern video-analysis efforts such as detection and recognition, which are integral to video surveillance and autonomous vehicles, involve so much data that they necessitate machine-vision processing with minimal human intervention. In such cases, the video codec must be optimized for machine vision. This paper explores the effects of compression on detection and recognition algorithms (objects, faces, and license plates) and introduces novel full-reference image/video-quality metrics for each task, tailored to machine vision. Experimental results indicate our proposed metrics correlate better with the machine-vision results for the respective tasks than do existing image/video-quality metrics.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.