Computer Science > Networking and Internet Architecture
[Submitted on 3 Nov 2024]
Title:LumosCore: Highly Scalable LLM Clusters with Optical Interconnect
View PDF HTML (experimental)Abstract:The emergence of Large Language Model(LLM) technologies has led to a rapidly growing demand for compute resources in models. In response, the enterprises are building large-scale multi-tenant GPU clusters with 10k or even ore GPUs. In contrast to the rapidly growing cluster size, the bandwidth of clusters has also been increasing to meet communication demands, with 800 Gbps optical modules already in practical use and 1.6 Tbps modules on the horizon. However, designing clusters that simultaneously meet the requirements of large scale and high bandwidth is challenging due to the limited capacity of electrical switch chips. Unlike electrical switch chips, the single-port bandwidth of MEMS-OCS is solely determined by the optical module, making it straightforward to achieve both bandwidth and scability requirement. In this paper, we propose an opto-electronic hybrid architecture called \textbf{LumosCore}. We address the issues of L2 protocols incompatibility potential network contention and algorithm time complexity through physical topology and logical topology design. Additionally, we design a polynomial-time complexity link reconfiguration algorithm to reconfigure MEMS-OCS with minimal time overhead. We validate the feasibility of the proposed scheme in a cluster consisting of 128 NPUs, and through simulation based on real traces, we demonstrate the superiority of \textbf{LumosCore} over traditional architectures.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.