Computer Science > Machine Learning
This paper has been withdrawn by Elaine Gatto
[Submitted on 1 Nov 2024 (v1), last revised 15 Nov 2024 (this version, v2)]
Title:Label Cluster Chains for Multi-Label Classification
No PDF available, click to view other formatsAbstract:Multi-label classification is a type of supervised machine learning that can simultaneously assign multiple labels to an instance. To solve this task, some methods divide the original problem into several sub-problems (local approach), others learn all labels at once (global approach), and others combine several classifiers (ensemble approach). Regardless of the approach used, exploring and learning label correlations is important to improve the classifier predictions. Ensemble of Classifier Chains (ECC) is a well-known multi-label method that considers label correlations and can achieve good overall performance on several multi-label datasets and evaluation measures. However, one of the challenges when working with ECC is the high dimensionality of the label space, which can impose limitations for fully-cascaded chains as the complexity increases regarding feature space expansion. To improve classifier chains, we propose a method to chain disjoint correlated label clusters obtained by applying a partition method in the label space. During the training phase, the ground truth labels of each cluster are used as new features for all of the following clusters. During the test phase, the predicted labels of clusters are used as new features for all the following clusters. Our proposal, called Label Cluster Chains for Multi-Label Classification (LCC-ML), uses multi-label Random Forests as base classifiers in each cluster, combining their predictions to obtain a final multi-label classification. Our proposal obtained better results compared to the original ECC. This shows that learning and chaining disjoint correlated label clusters can better explore and learn label correlations.
Submission history
From: Elaine Gatto [view email][v1] Fri, 1 Nov 2024 11:16:37 UTC (2,812 KB)
[v2] Fri, 15 Nov 2024 16:15:46 UTC (1 KB) (withdrawn)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.