Computer Science > Machine Learning
[Submitted on 30 Oct 2024]
Title:SpiroActive: Active Learning for Efficient Data Acquisition for Spirometry
View PDF HTML (experimental)Abstract:Respiratory illnesses are a significant global health burden. Respiratory illnesses, primarily Chronic obstructive pulmonary disease (COPD), is the seventh leading cause of poor health worldwide and the third leading cause of death worldwide, causing 3.23 million deaths in 2019, necessitating early identification and diagnosis for effective mitigation. Among the diagnostic tools employed, spirometry plays a crucial role in detecting respiratory abnormalities. However, conventional clinical spirometry methods often entail considerable costs and practical limitations like the need for specialized equipment, trained personnel, and a dedicated clinical setting, making them less accessible. To address these challenges, wearable spirometry technologies have emerged as promising alternatives, offering accurate, cost-effective, and convenient solutions. The development of machine learning models for wearable spirometry heavily relies on the availability of high-quality ground truth spirometry data, which is a laborious and expensive endeavor. In this research, we propose using active learning, a sub-field of machine learning, to mitigate the challenges associated with data collection and labeling. By strategically selecting samples from the ground truth spirometer, we can mitigate the need for resource-intensive data collection. We present evidence that models trained on small subsets obtained through active learning achieve comparable/better results than models trained on the complete dataset.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.