Electrical Engineering and Systems Science > Systems and Control
[Submitted on 30 Oct 2024]
Title:An invariance principle based concentration result for large-scale stochastic pairwise interaction network systems
View PDF HTML (experimental)Abstract:We study stochastic pairwise interaction network systems whereby a finite population of agents, identified with the nodes of a graph, update their states in response to both individual mutations and pairwise interactions with their neighbors. The considered class of systems include the main epidemic models -such as the SIS, SIR, and SIRS models-, certain social dynamics models -such as the voter and anti-voter models-, as well as evolutionary dynamics on graphs. Since these stochastic systems fall into the class of finite-state Markov chains, they always admit stationary distributions. We analyze the asymptotic behavior of these stationary distributions in the limit as the population size grows large while the interaction network maintains certain mixing properties. Our approach relies on the use of Lyapunov-type functions to obtain concentration results on these stationary distributions. Notably, our results are not limited to fully mixed population models, as they do apply to a much broader spectrum of interaction network structures, including, e.g., Erdöos-Rényi random graphs.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.