Computer Science > Machine Learning
[Submitted on 26 Oct 2024]
Title:Generative AI in Health Economics and Outcomes Research: A Taxonomy of Key Definitions and Emerging Applications, an ISPOR Working Group Report
View PDFAbstract:Objective: This article offers a taxonomy of generative artificial intelligence (AI) for health economics and outcomes research (HEOR), explores its emerging applications, and outlines methods to enhance the accuracy and reliability of AI-generated outputs. Methods: The review defines foundational generative AI concepts and highlights current HEOR applications, including systematic literature reviews, health economic modeling, real-world evidence generation, and dossier development. Approaches such as prompt engineering (zero-shot, few-shot, chain-of-thought, persona pattern prompting), retrieval-augmented generation, model fine-tuning, and the use of domain-specific models are introduced to improve AI accuracy and reliability. Results: Generative AI shows significant potential in HEOR, enhancing efficiency, productivity, and offering novel solutions to complex challenges. Foundation models are promising in automating complex tasks, though challenges remain in scientific reliability, bias, interpretability, and workflow integration. The article discusses strategies to improve the accuracy of these AI tools. Conclusion: Generative AI could transform HEOR by increasing efficiency and accuracy across various applications. However, its full potential can only be realized by building HEOR expertise and addressing the limitations of current AI technologies. As AI evolves, ongoing research and innovation will shape its future role in the field.
Submission history
From: Rachael Fleurence [view email][v1] Sat, 26 Oct 2024 15:42:50 UTC (1,235 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.