Statistics > Machine Learning
[Submitted on 25 Oct 2024]
Title:Noise-Aware Differentially Private Variational Inference
View PDF HTML (experimental)Abstract:Differential privacy (DP) provides robust privacy guarantees for statistical inference, but this can lead to unreliable results and biases in downstream applications. While several noise-aware approaches have been proposed which integrate DP perturbation into the inference, they are limited to specific types of simple probabilistic models. In this work, we propose a novel method for noise-aware approximate Bayesian inference based on stochastic gradient variational inference which can also be applied to high-dimensional and non-conjugate models. We also propose a more accurate evaluation method for noise-aware posteriors. Empirically, our inference method has similar performance to existing methods in the domain where they are applicable. Outside this domain, we obtain accurate coverages on high-dimensional Bayesian linear regression and well-calibrated predictive probabilities on Bayesian logistic regression with the UCI Adult dataset.
Submission history
From: Talal Alrawajfeh [view email][v1] Fri, 25 Oct 2024 08:18:49 UTC (1,497 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.